Bu kaydın yasal hükümlere uygun olmadığını düşünüyorsanız lütfen sayfa sonundaki Hata Bildir bağlantısını takip ederek bildirimde bulununuz. Kayıtlar ilgili üniversite yöneticileri tarafından eklenmektedir. Nadiren de olsa kayıtlarla ilgili hatalar oluşabilmektedir. MİTOS internet üzerindeki herhangi bir ödev sitesi değildir!

Finite Element Modeling Of Machining Particle Reinforced Aluminum Metal Matrix Composites

BROWSE_DETAIL_CREATION_DATE: 15-08-2018

BROWSE_DETAIL_IDENTIFIER_SECTION

BROWSE_DETAIL_TYPE: Thesis

BROWSE_DETAIL_SUB_TYPE: Masters

BROWSE_DETAIL_PUBLISH_STATE: Unpublished

BROWSE_DETAIL_FORMAT: PDF Document

BROWSE_DETAIL_LANG: English

BROWSE_DETAIL_SUBJECTS: TECHNOLOGY, Mechanical engineering and machinery,

BROWSE_DETAIL_CREATORS: Rake, Nakka Lotfy (Author),

BROWSE_DETAIL_CONTRIBUTERS: Kılıç, Sadık Engin (Advisor),

BROWSE_DETAIL_TAB_KEYWORDS

 Finite Element Modeling, orthogonal cutting, particle reinforced aluminum metal matrix composite, heterogeneous material, tool-workpiece interaction. 


BROWSE_DETAIL_TAB_ABSTRACT

Metal matrix composites (MMCs) have become key materials in many technical fields, including automotive, aerospace and nuclear power plants. In most of these applications, machining processes are required to achieve the desired characteristics of the final product. Therefore, it is important to study the machining of MMCs and develop process models to understand their behavior during machining operations.   Based on process models, machining quality and cost can be improved by optimizing the cutting conditions for specific MMCs. As a step towards this goal, finite element modeling (FEM) is used to study the machining of particulate aluminum metal matrix composites (p-Al-MMCs). The selected matrix material was aluminum alloy A359 reinforced with silicon carbide (SiC) particles having a diameter of 20 μm with a volume fraction of 20%.  Orthogonal cutting of p-Al-MMC has been studied by three different approaches. In the first approach attempt has been made to implement an equivalent homogeneous material model (EHM), while in the second and third approaches p-Al-MMC is modeled as a two-phase heterogeneous material. The second and third approaches rely on periodic square and periodic hexagonal distributions of reinforcement particles, respectively. The interaction between matrix/cutting tool, matrix/reinforcement and reinforcement/ cutting tool has been considered.  The results of FE simulations are compared with the experimental data available in the literature. The results revealed that, EHM models calibrated using high strain rate tests may not be able to give good predictions of cutting forces and they should be re-calibrated for machining simulations. The results also revealed that, by modeling p-MMCs as a heterogeneous material the accuracy of cutting force predictions can be improved significantly.  


BROWSE_DETAIL_TAB_TOC



BROWSE_DETAIL_TAB_DESCRIPTION



BROWSE_DETAIL_TAB_RIGHTS



BROWSE_DETAIL_TAB_NOTES



BROWSE_DETAIL_TAB_REFERENCES


BROWSE_DETAIL_TAB_REFERENCED_BYS

BROWSE_DETAIL_GOTO_LIST

 

TEXT_STATS

  • TEXT_RECORD_STATS
    • TEXT_STATS_THIS_MONTH: 0
    • TEXT_STATS_TOTAL: 2441
  • TEXT_ONLINE_STATS
    • TEXT_ONLINE_STATS_TOTALONLINEVISITOR: 61
    • TEXT_ONLINE_STATS_TOTALONLINEUSER: 0
    • TEXT_STATS_TOTAL: 61

LINK_STATS