Bu kaydın yasal hükümlere uygun olmadığını düşünüyorsanız lütfen sayfa sonundaki Hata Bildir bağlantısını takip ederek bildirimde bulununuz. Kayıtlar ilgili üniversite yöneticileri tarafından eklenmektedir. Nadiren de olsa kayıtlarla ilgili hatalar oluşabilmektedir. MİTOS internet üzerindeki herhangi bir ödev sitesi değildir!

Estimation of Polypropylene Concentration of Modified Bitumen Images by Using k-NN and SVM Classifiers

BROWSE_DETAIL_CREATION_DATE: 12-06-2018

BROWSE_DETAIL_IDENTIFIER_SECTION

BROWSE_DETAIL_TYPE: Article

BROWSE_DETAIL_PUBLISH_STATE: Published

BROWSE_DETAIL_FORMAT: No File

BROWSE_DETAIL_LANG: English

BROWSE_DETAIL_SUBJECTS: TECHNOLOGY,

BROWSE_DETAIL_CREATORS: Tapkın, Serkan (Author), Şengöz, Burak (Author), Şengül, Gökhan (Author), Topal, Ali (Author), Özçelik, Erol (Author),

BROWSE_DETAIL_CONTRIBUTERS:


BROWSE_DETAIL_PUBLICATION_NAME: Journal of Computing in Civil Engineering


BROWSE_DETAIL_TAB_FILE:
BROWSE_DETAIL_NO_FILE

BROWSE_DETAIL_TAB_KEYWORDS

PPF, Polypropylene Concentration,polypropylene fiber



BROWSE_DETAIL_TAB_ABSTRACT

The goal of this study is to design an expert system that automatically classifies the microscopic images of polypropylene fiber (PPF) modified bitumen including seven different contents of fibers. Optical microscopy was used to capture the images from thin films of polypropylene fiber modified bitumen samples at a magnification scale of 100 ×. A total of 313 images were pre-processed, and features were extracted and selected by the exhaustive search method. The kk-nearest neighbor (k-NN) and multiclass support vector machine (SVM) classifiers were applied to quantify the representation capacity. The k-NN and multiclass SVM classifiers reached an accuracy rate of 87% and 86%, respectively. The results suggest that the proposed expert system can successfully estimate the concentration of PPF in bitumen images with good generalization characteristics.


BROWSE_DETAIL_TAB_TOC



BROWSE_DETAIL_TAB_DESCRIPTION



BROWSE_DETAIL_TAB_RIGHTS



BROWSE_DETAIL_TAB_NOTES

Tam metin erişim için URL'ye tıklayınız.


BROWSE_DETAIL_TAB_REFERENCES


BROWSE_DETAIL_TAB_REFERENCED_BYS

BROWSE_DETAIL_GOTO_LIST

 

TEXT_STATS

  • TEXT_RECORD_STATS
    • TEXT_STATS_THIS_MONTH: 4
    • TEXT_STATS_TOTAL: 2441
  • TEXT_ONLINE_STATS
    • TEXT_ONLINE_STATS_TOTALONLINEVISITOR: 59
    • TEXT_ONLINE_STATS_TOTALONLINEUSER: 0
    • TEXT_STATS_TOTAL: 59

LINK_STATS