Bu kaydın yasal hükümlere uygun olmadığını düşünüyorsanız lütfen sayfa sonundaki Hata Bildir bağlantısını takip ederek bildirimde bulununuz. Kayıtlar ilgili üniversite yöneticileri tarafından eklenmektedir. Nadiren de olsa kayıtlarla ilgili hatalar oluşabilmektedir. MİTOS internet üzerindeki herhangi bir ödev sitesi değildir!

Control of Bifurcations In Coupled Fitzhugh-Nagumo Neurons

BROWSE_DETAIL_CREATION_DATE: 12-12-2017

BROWSE_DETAIL_IDENTIFIER_SECTION

BROWSE_DETAIL_TYPE: Thesis

BROWSE_DETAIL_SUB_TYPE: Masters

BROWSE_DETAIL_PUBLISH_STATE: Unpublished

BROWSE_DETAIL_FORMAT: PDF Document

BROWSE_DETAIL_LANG: English

BROWSE_DETAIL_SUBJECTS: TECHNOLOGY, Electrical engineering. Electronics. Nuclear engineering,

BROWSE_DETAIL_CREATORS: Abdallh, Ammar Ouead Abdallh (Author),

BROWSE_DETAIL_CONTRIBUTERS: Doruk, Reşat Özgür (Advisor),

BROWSE_DETAIL_TAB_KEYWORDS

Fitzhugh-Nagumo Neurons, Bifurcation, Washout Filter, Projective Control,Electrical Synapse


BROWSE_DETAIL_TAB_ABSTRACT

A pair of identical Fitzhugh-Nagumo neuron models are coupled together through a gap junction (electrical synapse). These neurons are excited by external current. We have represented the system as an electrical circuit and the gap as synaptic conductance. The complete system is a nonlinear multi-input, multi-output (MIMO) type. By using bifurcation theory and the MATLAB based software package called MATCONT we tracked the neuron parameters that lead to bifurcation conditions. Actually, any change in the structure and the function of the synapse causes severe psychiatric and neurological disorders. So that, we studied the couple of the (F-N) model by selected different values of the synaptic conductance. For each value of the synaptic conductance we analyzed the bifurcations for the parameters of the neurons one-by-one using MATCONT. After that, we designed a controller to correct the defective in a neuron activity caused by the change in synaptic conductivity and the change in the neurons parameters. In this research, a washout filter controller of the second order type is used. This controller provides an electrical current injection to control the unwanted behavior of the neurons due to parametric bifurcations. Linear Quadratic Regulator (LQR) supported by projective control theory, serves as the reference method in the design of the controller.


BROWSE_DETAIL_TAB_TOC



BROWSE_DETAIL_TAB_DESCRIPTION



BROWSE_DETAIL_TAB_RIGHTS



BROWSE_DETAIL_TAB_NOTES



BROWSE_DETAIL_TAB_REFERENCES


BROWSE_DETAIL_TAB_REFERENCED_BYS

BROWSE_DETAIL_GOTO_LIST

 

TEXT_STATS

  • TEXT_RECORD_STATS
    • TEXT_STATS_THIS_MONTH: 0
    • TEXT_STATS_TOTAL: 2414
  • TEXT_ONLINE_STATS
    • TEXT_ONLINE_STATS_TOTALONLINEVISITOR: 39
    • TEXT_ONLINE_STATS_TOTALONLINEUSER: 0
    • TEXT_STATS_TOTAL: 39

LINK_STATS