Bu kaydın yasal hükümlere uygun olmadığını düşünüyorsanız lütfen sayfa sonundaki Hata Bildir bağlantısını takip ederek bildirimde bulununuz. Kayıtlar ilgili üniversite yöneticileri tarafından eklenmektedir. Nadiren de olsa kayıtlarla ilgili hatalar oluşabilmektedir. MİTOS internet üzerindeki herhangi bir ödev sitesi değildir!

Design and Implementation: Analog and Digital Control System For Separately Exited Direct Current Machine

BROWSE_DETAIL_CREATION_DATE: 16-10-2017

BROWSE_DETAIL_IDENTIFIER_SECTION

BROWSE_DETAIL_TYPE: Thesis

BROWSE_DETAIL_SUB_TYPE: Masters

BROWSE_DETAIL_PUBLISH_STATE: Published

BROWSE_DETAIL_FORMAT: PDF Document

BROWSE_DETAIL_LANG: English

BROWSE_DETAIL_SUBJECTS: TECHNOLOGY, Electrical engineering. Electronics. Nuclear engineering, Applications of electric power, Electronics,

BROWSE_DETAIL_CREATORS: Al-Gburi, Khalid Shakir Hamad (Author),

BROWSE_DETAIL_CONTRIBUTERS: Doruk, Reşat Özgür (Advisor),

BROWSE_DETAIL_TAB_KEYWORDS

Nonlinear model for a DC motor, Field current controller design, Motor speed controller design, PI controller, PI tuning, Analog DC motor controller, Digital DC motor controller


BROWSE_DETAIL_TAB_ABSTRACT

In this thesis, we will perform a design and implementation of a closed loop PI control system for a separately excited direct current motor. The design is first implemented in the continuous time domain (or s-plane) and then it is converted into digital domain (z-plane) The stability of the closed loop is analyzed in both domains including different values of the sampling time. The design procedure is separated into two parts. First of all, a field current PI controller is established. This controller should be sufficiently fast so that the nonlinear motor model can behave linearly. The second part involves the control of motor speed using again a PI controller. Here linear techniques will be applied, assuming that we have a constant field current set of field current control.The tuning of the proportional and integral (PI) controller gains will be tuned for the two different controllers and we evaluate different gains combinations to obtain a closed loop response of the overall system to achieve an acceptable level of performance. Upon finishing the continuous time designs, we implement the digital equivalents by transforming the controllers and plant into the digital domain. The performance of the closed loop is assessed by numerical simulations. The simulation is performed in linear and nonlinear domains. Nonlinear simulation involves, both field current and speed controllers working together on the actual nonlinear model of the DC motor. MATLAB is the simulation and computation environment


BROWSE_DETAIL_TAB_TOC



BROWSE_DETAIL_TAB_DESCRIPTION



BROWSE_DETAIL_TAB_RIGHTS



BROWSE_DETAIL_TAB_NOTES



BROWSE_DETAIL_TAB_REFERENCES


BROWSE_DETAIL_TAB_REFERENCED_BYS

BROWSE_DETAIL_GOTO_LIST

 

TEXT_STATS

  • TEXT_RECORD_STATS
    • TEXT_STATS_THIS_MONTH: 3
    • TEXT_STATS_TOTAL: 2444
  • TEXT_ONLINE_STATS
    • TEXT_ONLINE_STATS_TOTALONLINEVISITOR: 62
    • TEXT_ONLINE_STATS_TOTALONLINEUSER: 0
    • TEXT_STATS_TOTAL: 62

LINK_STATS