Bu kaydın yasal hükümlere uygun olmadığını düşünüyorsanız lütfen sayfa sonundaki Hata Bildir bağlantısını takip ederek bildirimde bulununuz. Kayıtlar ilgili üniversite yöneticileri tarafından eklenmektedir. Nadiren de olsa kayıtlarla ilgili hatalar oluşabilmektedir. MİTOS internet üzerindeki herhangi bir ödev sitesi değildir!

LIFE hybrid reactor as reactor grade plutonium burner








BROWSE_DETAIL_CREATORS: Şahin, Sümer (Author), Şahin, Hacı Mehmet (Author), Acır, Adem (Author),


BROWSE_DETAIL_PUBLICATION_IDENTIFIERS: Kaynağın tam metnine ulaşmak için URL’ ye tıklayınız.



Inertial fusion energy; TRISO fuel; FLIBE molten salt; National ignition facility; Reactor-grade plutonium; Fusion–fission (hybrid) reactors


    The early version of the conceptual modified design of the Laser Inertial Confinement Fusion Fission Energy (LIFE) engine consists of a spherical fusion chamber of 5 m diameter, surrounded by a multi-layered blanket. The first wall is made of 2 cm thick ODS and followed by a Li17Pb83 zone (2 cm), acting as neutron multiplier, tritium breeding and front coolant zone. It is separated by an ODS layer (2 cm) from the FLIBE molten salt zone (50 cm), containing fissionable fuel. A 3rd ODS layer (2 cm) separates the molten salt zone on the right side from the graphite reflector (30 cm).

    Calculations have been conducted for a constant fusion driver power of 500 MWth in S8-P3 approximation using 238-neutron groups. Reactor grade (RG) plutonium carbide fuel in form of TRISO particles with volume fractions of 2%, 3%, 4%, 5% and 6% have been dispersed homogenously in the FLIBE coolant.

    Tritium breeding ratio (TBR) values per incident fusion neutron for the above cited cases start with TBR = 1.35, 1.52, 1.73, 2.02 and 2.47, respectively. With the depletion of fissionable RG-Pu isotopes, TBR decreases gradually. At startup, higher fissionable fuel content in the molten salt leads to higher blanket energy multiplication, namely M0 = 3.8, 5.5, 7.7, 10.8 and 15.4 with 2%, 3%, 4%, 5% and 6% TRISO volume fraction, respectively. Calculations have led to very high burn up values (>400,000 MD.D/MT). TRISO particles can withstand such high burn ups. Such high burn ups would lead to drastic reduction of final nuclear waste per unit energy production.





    BROWSE_DETAIL_TAB_REFERENCES[1]J.J. Duderstadt, G.A. MosesInertial confinement fusionJohn Wiley & Sons (1982)[2]DiRicco DJ, Thorium fuels safer reactor hopes. Novastar Resources Ltd. 29.01.06. India Unveils Thorium Reactor. 25.08.2005.[3]H. Maekawa, Y. Oyama, J. Kusano, T. NakamuraAbsolute fission-rate distributions in lithium and hybrid fusion blanket assemblies, (I) experimental methods and resultsJ Nucl Sci Technol, 14 (2) (1977), pp. 97–107View Record in Scopus | Full Text via CrossRefH. Maekawa, Y. Oyama, J. Kusano, T. NakamuraAbsolute fission-rate distributions in lithium and hybrid fusion blanket assemblies, (II) analysis and evaluationJ Nucl Sci Technol, 14 (3) (1977), pp. 210–225[4]H.A. BetheThe fusion hybridPhys Today (1979), pp. 44–51View Record in Scopus | Full Text via CrossRef | Citing articles (56)[5]D.H. Berwald, J.J. DuderstadtPreliminary design and neutronic analysis of a laser fusion driven actinide waste burning hybrid reactorNucl Technol, 42 (1979), p. 34View Record in Scopus | Citing articles (11)[6]S. ŞahinNeutronic analysis of fast hybrid thermionic reactorsAtomkernenergie/Kerntechnik, 39 (1) (1981), p. 41View Record in Scopus | Citing articles (9)[7]S. Şahin, T.A. Al-Kusayer, M. Abdul RaoofNeutronic analysis of fusion–fission (hybrid) blanketsRadiat Eff, 92 (1-4) (1986), p. 159[8]S. Şahin, T.A. Al-Kusayer, M. Abdul RaoofPreliminary design studies of a cylindrical experimental hybrid blanket with (deuterium–tritium) driverFusion Technol, 10 (1986), p. 84View Record in Scopus[9]S. Şahin, M. Al-EshaikhFission power flattening in hybrid blankets using mixed fuelFusion Technol, 12 (1987), p. 395View Record in Scopus[10]S. ŞahinPower flattening in a catalyzed (D,D) fusion driven hybrid blanket using nuclear waste actinidesNucl Technol, 92 (1990), p. 93View Record in Scopus[11]R.W. Moir, et al.Molten salt fuel version of laser inertial fusion fission energy (LIFE)Fusion Sci Technol, 56 (2009), p. 632View Record in Scopus | Full Text via CrossRef[12]E.I. Moses, T. Diaz de la Rubia, J.F. Latkowski, J.C. Farmer, R.P. Abbott, K.J. Kramer, P.F. Peterson, H.F. Shaw, R.F. Lehman IIA sustainable nuclear fuel cycle based on laser inertial fusion energy (LIFE)Fusion Sci Technol, 56 (2) (2009), p. 566View Record in Scopus | Citing articles (14)[13]R.P. Abbott, Michael A. Gerhard, Kevin J. Kramer, Jeffery F. Latkowski, Kevin L. Morris, Per F. Peterson, J.E. SeifriedThermal and mechanical design aspects of the LIFE engineFusion Sci Technol, 56 (2) (2009), p. 618View Record in Scopus | Full Text via CrossRef | Citing articles (18)[14]K.J. Kramer, J.F. Latkowski, R.P. Abbott, J.K. Boyd, J.J. Powers, J.E. SeifriedNeutron transport and nuclear burnup analysis for the laser inertial confinement fusion–fission energy (LIFE) engineFusion Sci Technol, 56 (2) (2009), p. 625View Record in Scopus | Full Text via CrossRef[15]W.R. Meier, et al.System modeling for the laser fusion fission energy (LIFE) power plantFusion Sci Technol, 56 (2) (2009), p. 647View Record in Scopus | Full Text via CrossRef | Citing articles (13)[16]K.J. Kramer, W.R. Meier, J.F. Latkowski, R.P. AbbottParameter study of the LIFE engine nuclear designEnergy Convers Manage, 51 (9) (2010), p. 1744Article | PDF (588 K) | View Record in Scopus[17]IAEA. Potential of thorium based fuel cycles to constrain plutonium and reduce long lived waste toxicity. IAEA-TECDOC-1349, International Atomic Energy Agency; 2003.[18]S. Şahin, M.J. Khan, R. AhmedFuel breeding and actinide transmutation in the life engineFusion Eng Des, 86 (2011), p. 227Article | PDF (1552 K) | View Record in Scopus | Citing articles (7)[19]Campbell EM, Venneri F. Modular helium-cooled reactor, general atomics. Internal Report (July 2006).[20]Miller CM, Scheffel WJ. Post irradiation examination and evaluation of peach bottom FTE-13. General Atomics Document 906939 (November 1985).[21]A. Talamo, W. Gudowski, F. VenneriThe burnup capabilities of the deep burn modular helium reactor analyzed by the monte carlo continuous energy code MCBAnn Nucl Energy, 31 (2004), p. 173Article | PDF (1056 K) | View Record in Scopus[22]Terry WK, editor. MODULAR PEBBLE-BED REACTOR PROJECT, Idaho National Engineering and Environmental Laboratory, Bechtel BWXT, Idaho, LLC, Prepared for the U.S. DOE Under DOE Idaho Operations Office, Contract DE-AC07-99ID13727 (December 2001).[23]Sefidvash F, da Silva RS. Neutronics design of the FBNR. International Atomic Energy Agency, Vienna, Austria, IAEA Report 2008, Contract No. 12960/R3; 2007.[24]Petrie LM. SCALE5-Scale System Driver, NUREG/CR-0200, revision 7, volume III, Section M1, ORNL/NUREG/CSD-2/V3/R7. Oak Ridge National Laboratory; 2004.[25]Greene NM, Petrie LM, XSDRNPM, A One-Dimensional Discrete-Ordinates Code for Transport Analysis, NUREG/CR-0200, Revision 7, ORNL/NUREG/CSD-2/V2/R7. Oak Ridge National Laboratory; 2004.[26]Jordan WC, Bowman SM, Hollenbach DF. SCALE Cross-Section Libraries, NUREG/CR-0200, Revision 7, 3, Section M4, ORNL/NUREG/CSD-2/V3/R7. Oak Ridge National Laboratory; 2004.[27]Landers NF, Petrie LM, Hollenbach DF. CSAS, Control Module for Enhanced Criticality Safety Analysis Sequences, NUREG/CR-0200, Revision 6, 1, Section C4, ORNL/NUREG/CSD-2/V1/R7. Oak Ridge National Laboratory; 2004.[28]Greene NM. BONAMI, Resonance Self-Shielding by the Bondarenko Method, NUREG/CR-0200, Revision 6, 2, section F1, ORNL/NUREG/CSD-2/V2/R7. Oak Ridge National Laboratory; 2004.[29]Greene NM, Petrie LM, Westfall RM. NITAWL-III, Scale System Module For Performing Resonance Shielding and Working Library Production, NUREG/CR-0200, Revision 6, 2, Section F2, ORNL/NUREG/CSD-2/V2/R7. Oak Ridge National Laboratory; 2004.[30]S. Şahin, H.M. ŞahinRadiation shielding mass saving for the magnet coils of the vista spacecraftAnn Nucl Energy, 26 (6) (1998), p. 509[31]S. Şahin, A. ŞahinaslanNeutron and gamma ray heating in the grazing incident liquid metal mirrors for laser inertial fusion energy power plantsAnn Nucl Energy, 29 (5) (2002), p. 631





      • TEXT_STATS_TOTAL: 2441
      • TEXT_STATS_TOTAL: 53