Bu kaydın yasal hükümlere uygun olmadığını düşünüyorsanız lütfen sayfa sonundaki Hata Bildir bağlantısını takip ederek bildirimde bulununuz. Kayıtlar ilgili üniversite yöneticileri tarafından eklenmektedir. Nadiren de olsa kayıtlarla ilgili hatalar oluşabilmektedir. MİTOS internet üzerindeki herhangi bir ödev sitesi değildir!

Neutronic investigations of a laser fusion driven lithium cooled thorium breeder








BROWSE_DETAIL_CREATORS: Şahin, Sümer (Author), Şarer, Başar (Author), Çelik, Yurdunaz (Author),


BROWSE_DETAIL_PUBLICATION_NAME: Progress in Nuclear Energy BROWSE_DETAIL_PUBLICATION_IDENTIFIERS: Kaynağın tam metnine ulaşmak için URL’ ye tıklayınız.



Inertial confinement fusion; Thorium; TRISO particles; Natural lithium coolant; Tritium breeding


    The paper investigates the main parameters of a Laser Inertial Confinement Fusion Fission Energy (LIFE) driven thorium breeder. A similar blanket to the (LIFE) engine design in Lawrence Livermore National Laboratory is chosen in order to allow mutual feedback between two geographically separated teams towards a more advanced and improved design under consideration of totally independent views. In the basic design, frozen (D,T) fusion fuel ice is shot to the center of 5 m diameter spherical fusion reactor chamber cavity in pulsed mode (10–30 Hz). Fusion fuel burns through direct or indirect laser beam irradiation. The first wall surrounds the fusion chamber and is made of S-304 steel (2 cm). The fusion reactor cavity is kept in high vacuum. It is followed by a natural lithium coolant zone. A 2nd S-304 layer (2 cm) separates the lithium zone on the right side from the graphite reflector (30 cm). The outer boundary of the graphite reflector is also covered with a 3rd S-304 layer (2 cm).

    The calculations have been performed for a fusion driver power of 500 MWth with the last available version of MCNP, namely with MCNPX-2.7.0. In the first calculation phase, the thickness of the natural lithium coolant-tritium breeder zone (ΔRLi) has been varied as 50, 60, 70, 80, 90 and 100 cm to select the coolant thickness ΔRLi to have a satisfactory tritium breeding ratio (TBR) for continuous fusion reactor operation. For a pure fusion blanket without any fissionable elements in the coolant, TBR values are calculated as 1.237, 1.312, 1.370, 1.415, 1.449 and 1.476, respectively, for corresponding coolant thicknesses. A ΔRLi value of 50 cm would keep TBR > 1.05 for self-sustaining tritium supply. These ΔRLi values lead to blanket energy multiplication values of M = 1.209, 1.216, 1.219, 1.222, 1.223 and 1.224, respectively, and have been calculated, as a result of exoenergetic neutron absorption in 6Li. For coolant thickness values >50 cm, the increase of “M” would remain minor.

    In the second phase, ThO2 has been suspended in the form of micro-size tristructural-isotropic (TRISO) particles in the lithium coolant for 233U breeding. TRISO fuel has the great advantage of high mechanical stability. Furthermore, fission products will be separated from the coolant. TRISO particles have been dispersed homogenously in the lithium coolant with volume fractions Vtr = 1, 2, 3, 4, 5 and 10 vol-%. Calculations with ΔRLi = 50 cm and by variable Vtr result with TBR = 1.229, 1.222, 1.214, 1.206, 1.1997 and 1.1622, respectively. Parasitic neutron absorption in Thorium decreases the TBR values. For Vtr < 5 vol-% TRISO in the coolant, the increase of the neutron absorption in thorium will be compensated to a great degree through neutron multiplications via 232Th(n,f) and232Th(n,2n) reactions so that the sacrifice on TBR remains acceptable. However, forVtr > 5 TRISO vol-%, neutron absorption in thorium reduces TBR drastically. On the other hand, the blanket energy multiplication M increases with thorium volume fraction, namely as M = 1.2206, 1.2322, 1.2426, 1.2536, 1.2636, 1.3112 for respective TRISO volume fractions due to the contribution of fission energy. Fissile fuel productions in the blanket are calculated as 17.23, 33.09, 48.66, 64.21, 79.77 and 159.71 233U (kg/year), respectively.





    BROWSE_DETAIL_TAB_REFERENCESBethe, 1979H.A. BetheThe fusion hybridPhys. Today, 44 (1979)Berwald and Duderstadt, 1979D.H. Berwald, J.J. DuderstadtPreliminary design and neutronic analysis of a laser fusion driven actinide waste burning hybrid reactorNucl. Technol., 42 (1) (1979), p. 34View Record in Scopus | Citing articles (11)Campbell and Venneri, 2006E.M. Campbell, F. VenneriModular Helium-cooled Reactor, General Atomics(July 2006) Internal ReportDamkroger, 2010T. DamkrogerA stellar performanceSci. Technol. Rev. (April/May 2010) https://str.llnl.gov//AprMay10/damkroger.htmlKulcinski et al., 1989G.L. Kulcinski, et al.APOLLO – an advanced fuel fusion power reactor for the 21st centuryFusion Technol., 15 (1989), p. 1233View Record in Scopus | Citing articles (10)Lindl, 2013J. LindlOn the path to ignitionSci. Technol. Rev., 11 (March 2013) Lawrence Livermore National Laboratory https://str.llnl.gov/content/pages/march-2013/pdf/3.13.2.pdfManiscolco et al., 1981J.A. Maniscolco, et al.Recent progress in fusion-fission hybrid reactor design studiesNucl. Technol./Fusion, 1 (1981), p. 419Maniscolco et al., 1984J.A. Maniscolco, D.H. Berwald, R.W. Moir, J.D. LeeThe fusion breeder – an early application of nuclear fusionFusion Technol., 6 (1984), p. 584Miller and Scheffel, 1985C.M. Miller, W.J. ScheffelPost Irradiation Examination and Evaluation of Peach Bottom FTE-13(November 1985) General Atomics Document 906939Pelowitz, 2011D.B. PelowitzMCNPX User's ManualVersion 2.7.0, LA-CP-11-00438 Loa Alamos Scientific Laboratory (April 2011)Powers et al., 1995L.V. Powers, et al.Gas-Filled target designs produce ignition-scale plasma conditions with NOVAICF Q. Rep., 6 (1) (October–December 1995), pp. 15–21 Lawrence Livermore National LaboratoryView Record in Scopus | Citing articles (1)Seelmann-Eggebert et al., 1981W. Seelmann-Eggebert, et al.Karlsruher NuklidekarteKernforschungszentrum Karlsruhe (1981)Sefidvash and da Silva, 2007F. Sefidvash, R.S. da SilvaNeutronics Design of the FBNRInternational Atomic Energy Agency, Vienna, Austria (2007) IAEA Report 2008, Contract No. 12960/R3Şahin, 1971S. ŞahinThermische Vollthermionikreaktoren mit konstanter Emitteraufheizung zur Anwendung in der RaumfahrtAtomkernenergie, 18 (1971), p. 177View Record in Scopus | Citing articles (5)Şahin, 1974S. ŞahinAn investigation of fuel-moderator combinations for Thermal thermionic reactors in space craftsAtomkernenergie, 24 (1974), p. 89View Record in Scopus | Citing articles (3)Şahin et al., 1980S. Şahin, et al.Basic Structure of the fusion-fission (Hybrid) reactor experimental research project at Laboratoire de Genie Atomique de l'EPFLAtomkernenergie/Kerntechnik, 36 (1) (1980), p. 33View Record in ScopusŞahin, 1981S. ŞahinNeutronic analysis of fast hybrid thermionic reactorsAtomkernenergie/Kerntechnik, 39 (1) (1981), p. 41View Record in Scopus | Citing articles (9)Şahin, 1982S. ŞahinInvestigation of Lanthanide's as neutron multipliers for hybrid and fusion reactor blanketsNucl. Technol./Fusion, 2 (1982), p. 224View Record in Scopus | Citing articles (4)Şahin and Kumar, 1984S. Şahin, A. KumarFast hybrid thermionic blankets with actinide waste fuelNucl. Technol./Fusion, 5 (1984), p. 374View Record in Scopus | Citing articles (5)Şahin et al., 1986aS. Şahin, T.A. Al-Kusayer, M. Abdul RaoofNeutronic analysis of fusion-fission (Hybrid) blanketsRadiat. Eff., 92 (1–4) (1986), p. 159Şahin et al., 1986bS. Şahin, T.A. Al-Kusayer, M. Abdul RaoofPreliminary design studies of a cylindrical experimental hybrid blanket with (Deuterium-Tritium) driverFusion Technol., 10 (1) (1986), pp. 84–99View Record in Scopus | Citing articles (90)Şahin, 1990S. ŞahinPower flattening in a catalyzed (D,D) fusion driven hybrid blanket using nuclear waste actinidesNucl. Technol., 92 (1) (1990), p. 93View Record in Scopus | Citing articles (37)Şahin et al., 2005S. Şahin, H.M. Şahin, A. AcırRadiation shielding calculations for the VISTA spacecraftEnergy Convers. Manag., 46 (15/16) (2005), p. 2345Article | PDF (684 K) | View Record in Scopus | Citing articles (3)Şahin and Sefidvash, 2008S. Şahin, F. SefidvashThe fixed bed nuclear reactor conceptEnergy Convers. Manag., 49 (7) (2008), p. 1902Article | PDF (862 K) | View Record in Scopus | Citing articles (21)Şahin et al., 2010aS. Şahin, H.M. Şahin, A. AcırPerformance analysis of 233U for fixed bed nuclear reactorKerntechnik, 75 (5) (2010), p. 243View Record in Scopus | Full Text via CrossRef | Citing articles (2)Şahin et al., 2010bS. Şahin, H.M. Şahin, A. AcırCriticality and burn up evolutions of the fixed bed nuclear reactor with alternative fuelsEnergy Convers. Manag., 51 (9) (2010), p. 1781Article | PDF (1380 K) | View Record in Scopus | Citing articles (16)Şahin et al., 2011S. Şahin, M.J. Khan, R. AhmedFuel breeding and actinide transmutation in the LIFE engineFusion Eng. Des., 86 (2011), p. 227Article | PDF (1552 K) | View Record in Scopus | Citing articles (7)Talamo et al., 2004A. Talamo, W. Gudowski, F. VenneriThe burnup capabilities of the deep burn modular helium reactor analyzed by the Monte Carlo continuous energy code MCBAnn. Nucl. Energy, 31 (2004), p. 173Article | PDF (1056 K) | View Record in ScopusTerry, 2001W.K. Terry (Ed.), Modular Pebble-bed Reactor Project, Idaho National Engineering and Environmental Laboratory, Bechtel BWXT, Idaho, LLC (December 2001) Prepared for the U.S. DOE Under DOE Idaho Operations Office, Contract DE-AC07–99ID13727





      • TEXT_STATS_TOTAL: 2473
      • TEXT_STATS_TOTAL: 28