Bu kaydın yasal hükümlere uygun olmadığını düşünüyorsanız lütfen sayfa sonundaki Hata Bildir bağlantısını takip ederek bildirimde bulununuz. Kayıtlar ilgili üniversite yöneticileri tarafından eklenmektedir. Nadiren de olsa kayıtlarla ilgili hatalar oluşabilmektedir. MİTOS internet üzerindeki herhangi bir ödev sitesi değildir!

Performance Analysis Of Higher-Order Statistical Features In Classification Of Some Modulation Types

Diğer Başlık: Bazı Modülasyon Türlerinin Sınıflandırılmasında Yüksek Mertebeden İstatiksel Özelliklerin Performans Analizi

Oluşturulma Tarihi: 03-11-2020

Niteleme Bilgileri

Tür: Tez

Alt Tür: Yüksek Lisans Tezi

Yayınlanma Durumu: Yayınlanmamış

Dosya Biçimi: PDF

Dil: İngilizce

Konu(lar): Elektrik mühendisliği. Elektronik. Nükleer mühendislik,

Yazar(lar): Tezel, Remziye Büşra (Yazar),

Emeği Geçen(ler): Kara, Ali (Tez Danışmanı),


Yayın Tarihi: 06-02-2020


Dosya:
file show file
Görüntüle
download file
Kaydet

Anahtar Kelimeler

Modulation Classification, Feature Extraction, Support Vector Machine, Analog Modulations, Digital Modulations


Özet

Modulation Classification algorithms are used to determine the modulation type of signal obtained at the receiver and to use the appropriate demodulator. There are 2 types as Feature-based(FB) and Likelihood-based(LB). In this thesis, FB method is used, which is less complex in structure. Algorithm has been developed to classify the signals that were modulated by 12 Analog and Digital Modulation types. Statistical features, Higher-order Moments(HOMs) and Higher-order Cumulants(HOCs) were used as features. Signals, which are recorded as over-the-air adding synthetic simulated channel effects, were classified with Linear, Quadratic, and Cubic Support Vector Machine(SVM). The classification performance of the signals examined at SNR from 0 dB to 20 dB were presented. As a result, the classification performance was found to be stable between 10 dB and 20 dB and is approximately 73%. The highest value of performance was observed in Quadratic SVM as 75.5% at 12dB. In this thesis, the limits of the developed modulation classification algorithm successfully presented with the features and SVM structure of 12 modulation types.


İçindekiler



Açıklamalar



Haklar



Notlar



Kaynakça


Atıf Yapanlar

Gözat Sayfasına Dön

 

Sosyal Medya ve Araçlar

İstatistikler

  • Kayıt
    • Bu ay: 0
    • Toplam: 2555
  • Online
    • Ziyaretçi: 7
    • Üye: 0
    • Toplam: 7

Detaylı İstatistikler