Performance Analysis Of Hierarchical Classification Of Modulation Types | Atılım Üniversitesi Açık Erişim Sistemi
Bu kaydın yasal hükümlere uygun olmadığını düşünüyorsanız lütfen sayfa sonundaki Hata Bildir bağlantısını takip ederek bildirimde bulununuz. Kayıtlar ilgili üniversite yöneticileri tarafından eklenmektedir. Nadiren de olsa kayıtlarla ilgili hatalar oluşabilmektedir. MİTOS internet üzerindeki herhangi bir ödev sitesi değildir!
Performance Analysis Of Hierarchical Classification Of Modulation Types
Diğer Başlık: Modülasyon Türlerinin Hiyerarşik Sınıflandırılmasının Performans Analizi
Oluşturulma Tarihi: 03-11-2020
Niteleme Bilgileri
Tür: Tez
Alt Tür: Yüksek Lisans Tezi
Yayınlanma Durumu: Yayınlanmamış
Dosya Biçimi: PDF
Dil: İngilizce
Konu(lar): Elektrik mühendisliği. Elektronik. Nükleer mühendislik,
Yazar(lar): Yalçınkaya, Bengisu (Yazar),
Emeği Geçen(ler): Kara, Ali (Tez Danışmanı),
URL: http://acikarsiv.atilim.edu.tr/browse/2580/
Diğer Niteleme Bilgileri: http://acikarsiv.atilim.edu.tr/browse/2580/10323505.pdf
Automatic modulation classification, feature extraction, digital modulation, higher order statistics, support vector machines
Automatic modulation classification (AMC) is a frequently required framework to determine the modulation type of an incoming modulated signal with an unknown modulation type. AMC applications are divided under two main titles in the literature as likelihood-based (LB) and feature-based (FB) methods. In this thesis, an AMC algorithm is developed with a FB approach. As classifier, Support Vector Machine (SVM) using linear, quadratic and cubic kernel is chosen and their performances are compared. Over-the-air collected modulated signals with the SNR values between 0 and 30 dB are used. Signals are modulated with 12 different digital modulation types containing M-ASK, M-PSK, M-APSK up to higher orders. Statistical features i.e. mean, variance, skewness and kurtosis of the instantaneous amplitude, phase and frequency of the signal are used in addition to higher-order moments and cumulants up to 8th order. SVM using quadratic kernel showed slightly higher performance. In addition, a hierarchical classification structure with less complexity compared to the literature has been proposed in order to improve performance especially in high order modulation types which show very poor performance when classified with using a single classifier. A significant improvement is observed in the accuracies of these modulations comparing with the traditional method. The overall performance is increased from 80% to 90%.
Kaynakça
Atıf Yapanlar