Design Of Control Systems For An Aerial Manipulator | Atılım Üniversitesi Açık Erişim Sistemi
Bu kaydın yasal hükümlere uygun olmadığını düşünüyorsanız lütfen sayfa sonundaki Hata Bildir bağlantısını takip ederek bildirimde bulununuz. Kayıtlar ilgili üniversite yöneticileri tarafından eklenmektedir. Nadiren de olsa kayıtlarla ilgili hatalar oluşabilmektedir. MİTOS internet üzerindeki herhangi bir ödev sitesi değildir!
Design Of Control Systems For An Aerial Manipulator
Diğer Başlık: Hava Manipülatörü İçin Farklı Kontrol Sistemlerinin Tasarımı
Oluşturulma Tarihi: 06-10-2020
Niteleme Bilgileri
Tür: Tez
Alt Tür: Yüksek Lisans Tezi
Yayınlanma Durumu: Yayınlanmamış
Dosya Biçimi: PDF
Dil: İngilizce
Konu(lar): TEKNOLOJİ,
Yazar(lar): Başaranoğlu, Ahmet Turgut (Yazar),
Emeği Geçen(ler): Khan, Muhammad Umer (Tez Danışmanı), Arıkan, Kutluk Bilge (Tez Danışmanı),
URL: http://acikarsiv.atilim.edu.tr/browse/2531/
Diğer Niteleme Bilgileri: http://acikarsiv.atilim.edu.tr/browse/2531/10305196.pdf
Aerial Manipulator, Quadcopter, ADRC, Tracking LQR, Cascaded PID, Manipulator, Naze32, Aerial Robots, Raspberry Pi, Indoor Localization, Position Control
Within the scope of this thesis, attitude and position control systems are designed and discussed for an aerial manipulator which is composed of a quadcopter and a single degree of freedom robotic arm. The arm is working in the pitch plane of the aerial manipulator. Several control schemes exist to control its movements, but, most of them have been tested only under simulation scenarios. The comprehensive system dynamics (i.e. the coupled quadcopter and manipulator dynamics) is controlled by the centralized control architecture. In addition, the decentralized control approach is applied by designing separate control systems for the quadcopter and the arm. The use of the arm for the purposes of disturbance rejection, regulation, agility enhancement, and the steering are discussed in the scenarios. The Active Disturbance Rejection Control (ADRC), Tracking type Linear Quadratic Regulator (LQR), and the Cascaded PID control algorithms are designed. The selected control architecture is applied on an aerial manipulator that is working indoor for the selected scenario. Ultra-wideband localization system is used to measure the position and altitude of the system. The designed control system is implemented in real-time using Raspberry Pi 3 B +, Phyton script and Matlab/Simulink. A test bench is used to tune the parameters of the attitude controller. Then, basic flight tests are utilized to tune the altitude and position controllers. The simulations and tests show that the manipulator assists the aerial manipulator to reject the disturbances, control the attitude dynamics, and to steer the system.
Kaynakça
Atıf Yapanlar
0
813
198
0