Bu kaydın yasal hükümlere uygun olmadığını düşünüyorsanız lütfen sayfa sonundaki Hata Bildir bağlantısını takip ederek bildirimde bulununuz. Kayıtlar ilgili üniversite yöneticileri tarafından eklenmektedir. Nadiren de olsa kayıtlarla ilgili hatalar oluşabilmektedir. MİTOS internet üzerindeki herhangi bir ödev sitesi değildir!

Reciprocal Altruism Based Path Planning Using Particle Swarm Optimization (PSO)

Diğer Başlık: Parça Swarm Optimizasyonunu (PSO) Kullanarak Resiprokal Altruizm Tabanlı Yol Planlaması

Oluşturulma Tarihi: 06-10-2020

Niteleme Bilgileri

Tür: Tez

Alt Tür: Yüksek Lisans Tezi

Yayınlanma Durumu: Yayınlanmamış

Dosya Biçimi: PDF

Dil: İngilizce

Konu(lar): TEKNOLOJİ,

Yazar(lar): Maeedi, Ali Fadhıl Ali (Yazar),

Emeği Geçen(ler): Khan, Muhammad Umer (Tez Danışmanı),


Yayın Tarihi: 15-10-2019


Dosya:
file show file
Görüntüle
download file
Kaydet

Anahtar Kelimeler

Path Planning, Reciprocal Altruism, Particle Swarm Optimization, PSO, RAPSO, Kinship. 


Özet

Encountering the problems of nature that has always been a challenging task, what makes it more difficult is the change in operating conditions over time. Therefore, a robust algorithm is needed that is able to track the continuously changing optima over time. In this thesis, a novel particle swarm optimization based population kinship connectivity is proposed with the intent to improve the performance by introducing the sharing of particles information. The proposed algorithm, Reciprocal Altruism based Particle Swarm Optimization, utilizes the kinship relatedness between particles during the optimization process to reciprocate the significant data regarding the environment.

Reciprocal altruism theory is regularly conjured to clarify why irrelative particles helped as pairs in different types of intra-group cooperative conduct, e.g., egg exchanging among hermaphroditic fishes, blood spewing forth among vampire bats, assessment of predator among sticklebacks, allogrooming among vervet monkeys and impala, sustenance share among humans, brown capuchin monkeys, and basic chimpanzees.

Utilizing the concept of reciprocation, the RAPSO will ensure that all particles remain in close contact with each other through information exchange. Moreover, the amount of information that is exchanged between the particles is dependent upon their physical placement in the search space regions. Depending upon their region, they can be either classified as a donor or a recipient; furthermore, the amount of information exchanged between the particles is directly monitored through their associated health indicator.  The performance of the proposed approach shows that the reciprocal sharing has played its role effectively in order to control the movement of the swarm along the optimized path. The simulation results proved that RAPSO outperforms the conical PSO algorithm both in terms of error reduction and close connectivity.



İçindekiler



Açıklamalar



Haklar



Notlar



Kaynakça


Atıf Yapanlar

Gözat Sayfasına Dön

 

Sosyal Medya ve Araçlar

İstatistikler

  • Kayıt
    • Bu ay: 0
    • Toplam: 2710
  • Online
    • Ziyaretçi: 3
    • Üye: 0
    • Toplam: 3

Detaylı İstatistikler