Bu kaydın yasal hükümlere uygun olmadığını düşünüyorsanız lütfen sayfa sonundaki Hata Bildir bağlantısını takip ederek bildirimde bulununuz. Kayıtlar ilgili üniversite yöneticileri tarafından eklenmektedir. Nadiren de olsa kayıtlarla ilgili hatalar oluşabilmektedir. MİTOS internet üzerindeki herhangi bir ödev sitesi değildir!

Design and Implementation of Modular Front end For Rf Fingerprinting Of Bluetooth Signals

Oluşturulma Tarihi: 09-08-2018

Niteleme Bilgileri

Tür: Tez

Alt Tür: Yüksek Lisans Tezi

Yayınlanma Durumu: Yayınlanmamış

Dosya Biçimi: PDF

Dil: İngilizce

Konu(lar): Elektrik mühendisliği. Elektronik. Nükleer mühendislik,

Yazar(lar): Uzundurukan, Emre (Yazar),

Emeği Geçen(ler): Kara, Ali (Danışman),

Anahtar Kelimeler

RF fingerprinting, RF front end, Classification, 


Özet

In wireless networks, physical layer security would be complementary when higher level software based security approaches are inadequate. One of the physical layer methods is Radio Frequency (RF) fingerprinting. In RF fingerprinting method, data acquisition phase plays a critical role in precisely capturing signals for extracting the fingerprints. In this thesis, a low-cost modular RF front-end designed with commercial of the shelf (COTS) is presented. In order to design this RF front end, computer based design tool is used. Three different data acquisition methods including proposed RF front end usage is also presented. Moreover, assessment of the RF front end for the RF fingerprinting performance with respect to three different data sets are presented. Transient signal detection, feature extraction and classification algorithms are implemented on these data sets. To do classification support vector machine (SVM) and neural networks (NN) are used. Results of the study show that the designed RF front end would work well in RF fingerprinting, and accurate classification of BT devices. 


İçindekiler



Açıklamalar



Haklar



Notlar



Kaynakça


Atıf Yapanlar

Gözat Sayfasına Dön

 

Sosyal Medya ve Araçlar

İstatistikler

  • Kayıt
    • Bu ay: 5
    • Toplam: 2326
  • Online
    • Ziyaretçi: 32
    • Üye: 0
    • Toplam: 32

Detaylı İstatistikler