Bu kaydın yasal hükümlere uygun olmadığını düşünüyorsanız lütfen sayfa sonundaki Hata Bildir bağlantısını takip ederek bildirimde bulununuz. Kayıtlar ilgili üniversite yöneticileri tarafından eklenmektedir. Nadiren de olsa kayıtlarla ilgili hatalar oluşabilmektedir. MİTOS internet üzerindeki herhangi bir ödev sitesi değildir!

Using Bluetooth Low Energy Beacons for Indoor Localization, International Journal of Intelligent Systems and Applications in Engineering

Oluşturulma Tarihi: 13-06-2018

Niteleme Bilgileri

Tür: Makale

Yayınlanma Durumu: Yayınlanmış

Dosya Biçimi: Dosya Yok

Dil: İngilizce

Konu(lar): TEKNOLOJİ,

Yazar(lar): Şengül, Gökhan (Yazar), Karakaya, Murat (Yazar),

Emeği Geçen(ler):


Yayın Adı: International Journal of Intelligent Systems and Applications in Engineering Yayın Tarihi: 2017 Sayı: 2 Cilt: 5


Dosya:
Dosya Yok

Anahtar Kelimeler

Indoor localization; Bluetooth Low Energy; Beacons; kNN


Özet

Recently Bluetooth Low Energy (BLE) Beacons gain high popularity due to their low consumption of energy and, thereby, long lifetime. Using the BLE protocol, these devices emit advertisement packets at fixed intervals for a short duration. Indoor localization solutions aim to provide an accurate, low cost estimate of sub-room indoor positioning. There are various techniques proposed for this purpose. BLE Beacons are good hardware candidates to assist the creation of such indoor localization solutions. Given the exact position of BLE Beacons, one can attempt to estimate a reciver position according to the received signal power. In this work, we investigated the success of such an indoor localization approach employing multiple BLE Beacons and two different estimation techniques. The results of the experiments indicate that employing multiple BLE Beacons increases the success of prediction techniques considerably.


İçindekiler



Açıklamalar



Haklar



Notlar

Tam metin erişim için URL'ye tıklayınız.


KaynakçaB. Yu, L. Xu, and Y. Li, Bluetooth low energy (BLE) based mobile electrocardiogram monitoring system. Presented at IEEE Information and Automation (ICIA), 2012 International Conference (pp. 763-767).Official Bluetooth Website. (2016, April). [Online]. Available: http://www.bluetooth.comR. Harle, “A survey of indoor inertial positioning systems for pedestrians,” Communications Surveys & Tutorials, IEEE, vol. 15, no.3, pp. 1281-1293, 2013.Z. Farid, R. Nordin, and M. Ismail, “Recent advances in wireless indoor localization techniques and system,” Journal of Computer Networks and Communications, 2013.Y. Liu and Z. Yang, “Location, Localization, and Localizability. Location-awareness Technology for Wireless Networks,” Springer Science & Business Media, 2010.H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning techniques and systems,” Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 37, no.6, pp.1067-1080, 2007.Y. Gu, A. Lo and I. Niemegeers, “A survey of indoor positioning systems for wireless personal networks,” Communications Surveys & Tutorials, IEEE, vol. 11, no.1, pp.13-32, 2009.D. Zhang, F. Xia, Z. Yang, L. Yao, and W. Zhao, Localization technologies for indoor human tracking. IEEE In Future Information Technology (FutureTech), 2010 5th International Conference on pp. 1-6, 2010.F. Subhan, H. Hasbullah, A. Rozyyev, and S.T. Bakhsh, “Indoor positioning in bluetooth networks using fingerprinting and lateration approach,” Presented at IEEE Information Science and Applications (ICISA), pp.1-9, 2011.H.J. P. Iglesias, V. Barral, and C. J. Escudero, Indoor person localization system through RSSI Bluetooth fingerprinting. Presented at IEEE Systems, Signals and Image Processing (IWSSIP), 2012 19th International Conference on pp. 40-43), 2012.T. A. Johnson, and P. Seeling, Localization using bluetooth device names. Presented at ACM Proceedings of the thirteenth ACM international symposium on Mobile Ad Hoc Networking and Computing, pp. 247-248, 2012.L. Chen, H. Kuusniemi, Y. Chen, J. Liu, L. Pei, L Ruotsalainen, andR. Chen, Constraint Kalman filter for indoor bluetooth localization. Presented at IEEE Signal Processing Conference (EUSIPCO), 2015 23rd European, pp. 1915-1919, 2015N. Mair, and Q. H. Mahmoud, A collaborative Bluetooth-based approach to localization of mobile devices. Presented at 2012 8th International Conference on IEEE Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), pp. 363-371, 2012.P. Mirowski, T. K. Ho, S. Yi, and M. MacDonald, Simultaneous localization and mapping with mixed WiFi, Bluetooth, LTE and magnetic signals. Presented at International Conference on IEEE SignalSLAM: In Indoor Positioning and Indoor Navigation (IPIN), pp. 1-10, 2013.T. M. Cover, and P. E. Hart “Nearest neighbor pattern classification”, IEEE Transactions on Information Theory, vol.13, pp. 21-27, 1967.G. Şengül, “Classification of parasite egg cells using gray level cooccurence matrix and kNN”, Biomedical Research, vol. 27, no. 3, pp. 829-834, April 2016.S. Tapkin, B. Şengöz., G. Şengül, A. Topal, and E. Özçelik, “Estimation of Polypropylene Concentration of Modified Bitumen Images by Using k-NN and SVM Classifiers”, Journal of Computing in Civil Engineering, vol. 29, no. 5, 2015.R. D. Short, and K. Fukunaga, “The optimal distance measure for nearest neighbor classification”. IEEE Transactions on Information Theory, vol. 27, pp. 622-627, 1981.G. J. McLachlan, “Discriminant Analysis and Statistical Pattern Recognition”, Wiley Interscience. ISBN 0-471-69115-1, 2004.


Atıf Yapanlar

Gözat Sayfasına Dön

 

Sosyal Medya ve Araçlar

İstatistikler

  • Kayıt
    • Bu ay: 29
    • Toplam: 2240
  • Online
    • Ziyaretçi: 40
    • Üye: 0
    • Toplam: 40

Detaylı İstatistikler