Bu kaydın yasal hükümlere uygun olmadığını düşünüyorsanız lütfen sayfa sonundaki Hata Bildir bağlantısını takip ederek bildirimde bulununuz. Kayıtlar ilgili üniversite yöneticileri tarafından eklenmektedir. Nadiren de olsa kayıtlarla ilgili hatalar oluşabilmektedir. MİTOS internet üzerindeki herhangi bir ödev sitesi değildir!

Emotion Estimation From Facial Images

Oluşturulma Tarihi: 22-02-2017

Niteleme Bilgileri

Tür: Tez

Alt Tür: Yüksek Lisans Tezi

Yayınlanma Durumu: Yayınlanmamış

Dosya Biçimi: PDF

Dil: İngilizce

Konu(lar): TEKNOLOJİ,

Yazar(lar): Najah, Goma Mohamed Salem (Yazar),

Emeği Geçen(ler): Şengül, Gökhan (Danışman),

Anahtar Kelimeler

Emotion estimation, Facial Expression Images, Expression Classification, Histogram of Oriented Gradient, Local Binary Pattern; K-Nearest Neighbors, Support Vector Machine.


Özet

Prediction of emotions from facial images is one of the popular and active researches, and it’s implemented via many methods. In this thesis, the proposed system to predict emotions from facial expressions images contains several stages, first stage of this system is the pre-processing stage which is applied by detecting the face in images, then resizing the images, and then Histogram Equalization (HE) technique is applied to normalize the effects of illumination. The second stage is extracting features from facial expressions images using Histogram of Oriented Gradient (HOG), and Local Binary Pattern (LBP) feature extraction algorithms, which generates the training dataset and the testing dataset that contains expressions of Anger, Contempt, Disgust, Embarrass, Fear, Happy, Neutral, Pride, Sad, and Surprised. Then Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) classifiers are used for the classification stage in order to predict the emotion. In addition, Confusion Matrix (CM) technique is used to evaluate the performance of these classifiers. The proposed system is tested on JAFFE, KDEF, MUG, WSEFEP, TFEID and ADFES databases. However, the proposed system achieved prediction rate of 96.13% when HOG+SVM method is used.


İçindekiler



Açıklamalar



Haklar



Notlar



Kaynakça


Atıf Yapanlar

Gözat Sayfasına Dön

 

Sosyal Medya ve Araçlar

İstatistikler

  • Kayıt
    • Bu ay: 0
    • Toplam: 2414
  • Online
    • Ziyaretçi: 16
    • Üye: 0
    • Toplam: 16

Detaylı İstatistikler