Bu kaydın yasal hükümlere uygun olmadığını düşünüyorsanız lütfen sayfa sonundaki Hata Bildir bağlantısını takip ederek bildirimde bulununuz. Kayıtlar ilgili üniversite yöneticileri tarafından eklenmektedir. Nadiren de olsa kayıtlarla ilgili hatalar oluşabilmektedir. MİTOS internet üzerindeki herhangi bir ödev sitesi değildir!

Vehicle Logo Recognition Using Image Processing Methods

Oluşturulma Tarihi: 20-02-2017

Niteleme Bilgileri

Tür: Tez

Alt Tür: Yüksek Lisans Tezi

Yayınlanma Durumu: Yayınlanmamış

Dosya Biçimi: PDF

Dil: İngilizce

Konu(lar): TEKNOLOJİ,

Yazar(lar): Albera, Sumia A. A (Yazar),

Emeği Geçen(ler): Şengül, Gökhan (Danışman),

Anahtar Kelimeler

Vehicle logo recognition, Vehicle logo classification, SURF algorithm, Local Binary recognition, Gray Level Co-occurrence Matrix


Özet

Vehicle logo recognition is the ability to recognize and classify the vehicle logos in different conditions with high accuracy. This system plays significant role in monitoring systems, security and surveillance systems, such as the control system in government buildings and military camps. Vehicle logo recognition starts with reading the logo as an image, goes on analyzing and classifying of the logo. The goal of this study is to compare the performance of three methods used for vehicle logo recognition and determine the accuracy of each method in noisy environments and from images captured from different directions. The main methods used for vehicle logo recognition in this thesis are: SURF algorithm, LBP and GLCM. In addition, KNN is used as a classifier with LBP and GLCM features. These methods are tested on the data sets collected in two ways: gathering logo images from the website of the manufacturers and capturing logo images by a standard camera. Best result in this thesis for vehicle logo recognition was achieved by the SURF algorithm


İçindekiler



Açıklamalar



Haklar



Notlar



Kaynakça


Atıf Yapanlar

Gözat Sayfasına Dön

 

Sosyal Medya ve Araçlar

İstatistikler

  • Kayıt
    • Bu ay: 4
    • Toplam: 2441
  • Online
    • Ziyaretçi: 58
    • Üye: 0
    • Toplam: 58

Detaylı İstatistikler