An Approach for Parallel CFD Solutions of Store Separation Problems | Atılım Üniversitesi Açık Erişim Sistemi
Bu kaydın yasal hükümlere uygun olmadığını düşünüyorsanız lütfen sayfa sonundaki Hata Bildir bağlantısını takip ederek bildirimde bulununuz. Kayıtlar ilgili üniversite yöneticileri tarafından eklenmektedir. Nadiren de olsa kayıtlarla ilgili hatalar oluşabilmektedir. MİTOS internet üzerindeki herhangi bir ödev sitesi değildir!
An Approach for Parallel CFD Solutions of Store Separation Problems
Oluşturulma Tarihi:
Niteleme Bilgileri
Tür: Makale
Yayınlanma Durumu: Yayınlanmış
Dosya Biçimi: Dosya Yok
Dil: İngilizce
Konu(lar): TEKNOLOJİ,
Yazar(lar): Oktay, Erdal (Yazar), Merttopcuoğlu, O. (Yazar), Akay, Hasan U. (Yazar),
Emeği Geçen(ler):
Yayın Niteleme Bilgileri: Kaynağın tam metnine ulaşmak için URL’ ye tıklayınız.
Dosya:
Dosya Yok
Computational Science and Engineering; Appl.Mathematics/Computational Methods of Engineering; Fluid- and Aerodynamics; Theoretical; Mathematical and Computational Physics
A new fast and accurate parallel algorithm is developed for solution of moving body problems, with specific reference to store separation problems. The algorithm starts with the development of separate meshes for the moving body (store) and the aircraft wing, which are then connected by using mesh blanking and mesh filling algorithms automatically. Following the partitioning of the connected meshes for parallel computing and obtaining a steady state flow solution, the separation starts by using a dynamically deforming mesh algorithm coupled with the six-degree of freedom rigid body dynamics equations for the store. The solutions continue until severe mesh distortions are reached after which automatic remeshing and partitioning are done on a new mesh obtained by blanking and filling operations to continue with the solutions. As the store reaches far enough distances from the aircraft, the algorithm switches to a relative coordinates eliminating any need for mesh deformations and remeshing. The developed algorithms and the results are discussed with a sample problem, including the parallel efficiency on distributed computers.
Springer-Verlag Berlin Heidelberg
Kaynakça1.Oktay, E., and Akay, H.U. and Uzun, A., “A Parallelized 3D Unstructured Euler Solver for Unsteady Aerodynamics,” Journal of Aircraft, Vol. 40, No. 2, pp. 348–354, 2003.CrossRef2.Akay, H.U., Oktay, E., Li, Z. and He, X., “Parallel Computing for Aeroelasticity Problems,” AIAA Paper: 2003–3511, 33rd AIAA Fluid Dynamics Conference, June 20–23, 2003, Orlando, FL.3.Akay, H.U., Baddi A., Oktay, E., “Large-Scale Parallel Computations of Solid-Fluid Interaction Problems for Aeroelastic Flutter Predictions,” AIAC-2005-002, Ankara International Aerospace Conference, August 22–25, 2005, Ankara, Turkey.4.Kandil, O.A. and Chuang, H.A., “Computation of Steady and Unsteady Vortex-Dominated Flows with Shock Waves,” AIAA Journal, Vol. 26, pp. 524–531, 1998.CrossRef5.Hi, X., “Parallel Computations of Solid-Fluid Interactions Using Arbitrary Lagrangian-Eulerian and Relative Coordinate Formulations,” Master's Thesis, Purdue University, May 2004.6.Benek, J.A, Buning, P.G., and Steger, J.L., “A 3-D Chimera Grid Embedding Technique,” AIAA Paper 85–1523, June 1985.7.Nakahashi, K. and Togashi, F., “Intergrid-Boundary Definition Method for Overset Unstructured Grid Approach,” AIAA Journal, Vol. 38, pp. 2077–2084, 2000.CrossRef8.Frink, N.T., Parikh, P., and Pirzadeh, S., “A Fast Upwind Solver of the Euler Equations on Three-Dimensional Unstructured Meshes,” AIAA Paper, 91-0102, 1991.9.Anderson, W.K., “Grid Generation and Flow Solution Method for Euler Equations on Unstructured Grids,” Journal of Computational Physics, Vol. 110, pp. 23–38, 1994.CrossRef10.Batina, J.T., “Unsteady Euler Algorithm with Unstructured Dynamic Mesh for Complex Aircraft Aerodynamic Analysis,” AIAA Journal, Vol. 29, No.3, pp. 327–333, 1991.CrossRef11.Karamete, K., “A General Unstructured Mesh Generation Algorithm with its Use in CFD Applications,” Ph.D. Thesis, METU, Dec. 1996.12.Renka, R.J., “Quadratic Shepard Method for Trivariate Interpolation of Scattered Data,” Transactions on Mathematical Software, Vol. 14, No. 2, p. 151, 1988.MathSciNet13.Bronnenberg, C.E., “GD: A General Divider User's Manual - An Unstructured Grid Partitioning Program,” CFD Laboratory Report, IUPUI, 1999.14.Fox, J.H., “Chapter 23: Generic Wing, Pylon, and Moving Finned Store,” In “Verification and Validation Data for Computational Unsteady Aerodynamics,” RTO Technical Report, RTO-TR-26, 2000.
Atıf Yapanlar